High Density Air Sensors: The Power of Next Generation Monitoring for Better Human and Environmental Health.

> William Goodman Irad Kuhnreich Raviv Yatom

PerkinElmer Environmental Health 710 Bridgeport Avenue Shelton, CT 06484

> Presented at NEMC July 13th 2015

Summary

- Background / Why air monitoring needs new technology
- Elm sensor network experiences in year 1
 - Performance
 - Events
 - Trends
- Where are we headed and how will we get there.

Mass Market Understanding of Air Quality

MARKET TRENDS

- Population shift into mega-cities is driving increased exposure to poor environmental conditions
- Environmental conditions are known to negatively impact human health, with continually strengthening research in scientific community
- High cost of health care resulting from chronic conditions
- Cities and municipalities want better data to drive policy decisions and to demonstrate the benefits of those decisions to stake holders
- Industry is looking to understand their actual environmental impact to plan actions proactively rather than waiting for regulation and imposed requirements

We Simply Cannot Deploy Enough Stations

Better Air, Better Life

State of the Air Monitoring

Bringing clarity to air and health

Network overview

Sensor technology is complimentary to monitoring stations

Practical Experience with Elm

- Comparisons with reference methods
- Local events detected in the network
- How density improves data

 PerkinElmer

Element	Ozone			Units	
Averaging period	5 min	1 Hour	8 Hour	Time	
True value average	45.4			ppb	
Average absolute error	6.0	5	3	ppb	
Average percentage error	15	12	6	%	
Error Standard Deviation	5.2	4.1	2.8	ppb	
R squared	0.68	0.76	0.91	N/A	

Elm O3 vs EPA O3 Boston (10 months)

ELM O3 Asia Reference Comparison

ELM PM Asia Reference Comparison

Where are we headed and how we will get there?

- Demonstrate the value of truly local real-time pollution data
- Create effective mechanisms to operate low cost networks
- Communicate the relevant information to the right audience
- Overcome new issues
- Make the data even more valuable

The Back Yard Bonfire

July 4th

Nº S			05		Air quality durin	Air quality during the past :				Last updated Oct 15th, 2014 at 3:58 pr
			7 2° ⊦					7/6/2	2014 to 7/7/2014	
Cottage Hill	Air Quality Level			Nitrogen Dioxide	Nitrogen Dioxide		Ozone			
	GOOI	D	°F °C		Particulates	\bigcirc	Noise	\bigcirc	Humidity	\bigcirc
oor (1000)										
Ioderate (500)										
				Organ	nic Compoi	unds				
		1	1		1					
	9 AM	12 PM	3 PM	6 PM	9 PM	Mon 7	3 AM	6 AM	9 AM	12 PM
	6 AM		12 PM	6 PM	Mon 7	I 6 AM	12 PM		i 6 PM	
					articulates					
	9 AM	12 PM	3 PM	6 PM	9 PM	Mon 7	3 AM	6 AM	9 AM	
	6 AM		12 PM	6 PM	Mon 7	6 AM	12 PM		6 PM	

Yard Care

TSP Resulting from a Jet Crash

Importance of Meteorological Data

Back Trajectory to VOC Sources

Boston's Diurnal Pattern – 25 units averaged over 6 months ψelm

Boston Weekly Pattern –25 units averaged over 6 months

Ь elm

Boston Weekly Pattern – No2 6 units nearby

NO2 Boston vs close AQM stations

PerkinElmer For the Better

How can we add even more to the data?

Noise Vs NO

What will truly dense networks enable?

Valuable insights

- Real-time decisions and recommendations
 - Be it traffic management, walking to school, where to jog... eventually where public health risks are highest?
- The ability to understand your exposure
 - Ubiquitous devices or mobile sensors
- Individualized exposure data
- · Data to link exposure with health
- Event detection

What are the new Challenges will we face?

- Litigation and indicative data?
- How do you rationalize historical legislation and standards with new technology?
- What about industry?
 - Networks can enable industry to further improve their processes.
 - Risk of measuring something that is not mandatory.

How do we communicate the relevant information to the relevant audience?

- Providing technical audiences a means to evaluate the performance of the system realtime.
- Tools to fully use heterogeneous air quality data.
- Explaining complicated ideas such as precision and accuracy of a dynamic system to lay people.
- Summarizing it in a means that is most useful in the specific setting.

Putting it together – how we will get there.

PerkinElme

- Demonstrate the value of the data to many stakeholders including the public.
- Deliver the information in through customized applications that enable specific decisions.
- Make the data personal and interesting, enabling people to make decisions they feel good about.
- Make it social
- Make it positive Air pollution exposure is often something we have some control over. Empower people.